US009130897B2

a2 United States Patent

(10) Patent No.: US 9,130,897 B2

Boubez et al. 45) Date of Patent: *Sep. 8, 2015
(54) SYSTEM AND METHOD FOR SECURING USPCccovueneee 709/203, 218, 223, 225, 230, 318,
WEB SERVICES 726/4,7,9;713/170
See application file for complete search history.
(71) Applicant: CA, INC., Islandia, NY (US)
(56) References Cited
(72) Inventors: Toufic Boubez, Vancouver (CA); Scott
Morrison, New Westminster (CA); U.S. PATENT DOCUMENTS
Dimitri Sirota, Vancouver (CA); 6484261 Bl 112002 Wicgel
. ,484, iege
Francois Lascelles, Kelowna (CA) 6,662,235 B1* 12/2003 Callis etal. .oocoocrn...... 719/318
(73) Assignee: CA, INC., New York, NY (US) (Continued)
(*) Notice: Subject to any disclaimer, the term of this FOREIGN PATENT DOCUMENTS
patent is extended or adjusted under 35
U.S.C. 154(b) by 33 days. WO WO03091895 11/2003
This patent is subject to a terminal dis- OTHER PUBLICATIONS
claimer. Box et al. , “Web Services Policy Framework (WS-Policy)”, version
1.01, Jun. 2, 2003.*
21) Appl. No.: 13/901,489 ’ '
(1) Appl. No ’ (Continued)
(22) Filed: May 23, 2013
Primary Examiner — Kambiz Zand
(65) Prior Publication Data Assistant Examiner — Noura Zoubair
US 2014/0351316 Al Nov. 27, 2014 (74) Attorney, Agent, or Firm — Vierra Magen Marcus LLP
Related U.S. Application Data (57 ABSTRACT
(63) Continuation of application No. 10/952,787, filed on A method and system for securing web services on one or
Sep. 30, 2004, now abandoned. more server computers by one or more client computers, the
B ’ ’ o computers connected to one or more networks through one or
(60) Provisional application No. 60/506,759, filed on Sep. more network interfaces, each computer having one or more
30, 2003. memories and one or more central processing units (CPUs),
the system including one or more logical expressions that
(51) Imt.ClL : : .
define constraints on one or more service releases; a gateway
HO4L 12/24 (2006.01) process receiving service request messages from one or more
Ho4L 29/06 (2006.01) of'the clients for i) identifying the service request message, ii)
(52) US.CL processing the service request message in accordance with
CPC i H04L 63/00 (2013.01); HO4L 63/08 one or more of the logical expressions associated with the
(2013.01); HO4L 63/10 (2013.01); HO4L requested service and iii) providing access to the requested
63/168 (2013.01) service if the constraints are satisfied.
(58) Field of Classification Search

CPC ... HOAL 63/08; HO4L 63/10; HO4L 63/168

SOAP Agent A0

12 Claims, 6 Drawing Sheets

Gateway Server 5/36

t4essage Processing Augmentation

‘\: Poticy

T
Gu Unsttended soap } s
552
Web Console Subsystem /&5 Management Services 982 Pprotected
service)
Clients S0AP with WSS

Message Processing 584

o NET

i : | Wa-palicy
- NET o} Coche | ot
» IAX-MRPC
- 18M, BEA,
+ IBM, 5EA, Lacat Identity Logging Crypto e
o :.L_?F,a.'s?gl [PKCSAIOCER o rovicer | 586| | andAugit] | Services :;i
W SRR T o e = i} . o PERI
» PERL | Y5093 {interal 1 [Eesc 7 b SOAP Lt
SORPiiLite Certicate [e deentity S
— 4 r\«‘\f’y‘ im! i EEOJ] Processor, \ WSDL
I N e,
: Internet S \
d Cryptographic 358 /[
556/ YSper\?iceg \ 1 tcr . Parsistence Manager S90 Repitcation| 1\ \
RS R P Intrane T PN Engine .
" Cryp t : { Fersistence Subsystem | e y \ 592
L. Erovides -
594
560 588
ernal %
Brovidays. 596

« 5unCne Directory Server
« Active Dirsctory

US 9,130,897 B2
Page 2

(56) References Cited
U.S. PATENT DOCUMENTS

2003/0182364 Al 9/2003 Large

2004/0128506 Al* 7/2004 Blakleyetal. 713/170
2006/0041636 Al 2/2006 Ballinger
OTHER PUBLICATIONS

Response to Canadian Office Action dated Sep. 5, 2014, Canadian
Patent Application No. 2,521,563.

Response to Canadian Office Action dated Jul. 8, 2014, Canadian
Patent Application No. 2,483,233.

Canadian Office Action dated Feb. 11, 2013, Canadian Patent Appli-
cation No. 2,521,563.

Response to Canadian Office Action dated Aug. 12, 2013, Canadian
Patent Application No. 2,521,563.

Canadian Office Action dated Feb. 13, 2013, Canadian Patent Appli-
cation No. 2,483,233,

Response to Canadian Office Action dated Aug. 8, 2013, Canadian
Patent Application No. 2,483,233.

Canadian Office Action dated May S, 2014, Canadian Patent Appli-
cation No. 2,521,563.

Canadian Office Action dated Jan. 8, 2014, Canadian Patent Appli-
cation No. 2,483,233,

Office Action dated Dec. 22, 2014, U.S. Appl. No. 13/855,595.
Response Office Action dated Mar. 23, 2015, U.S. Appl. No.
13/855,595.

Notice of Allowance dated Apr. 29,2015, U.S. Appl. No. 13/855,595.
Response to Office Action dated May 14, 2015, Canadian Patent
Application No. 2,521,563.

* cited by examiner

US 9,130,897 B2

Sheet 1 of 6

Sep. 8, 2015

U.S. Patent

{uoeaoAl)
PG
OB
007
{uondussap) {Lion0081p)
ysynd puy

001

B JVOZ

A

1oan

US 9,130,897 B2

Sheet 2 of 6

Sep. 8, 2015

U.S. Patent

2{OSUDY juswsfieuepy
wom uswaBeven 3R]
—~— 5o £ Johe

IOAIDG
SOOIAIRS GOM

oom?..em
Asozoong
Bunsixgy

00¢
0¢cs R
L - jusweberury
T aoker 816
459 1488 ./

woeld
N

T

UjewoQg IJIAIBE M

90§

ujewoq jusyd

£0C

US 9,130,897 B2

Sheet 3 of 6

Sep. 8, 2015

U.S. Patent

¥ "DIA

ci9

:: Koyod
Aypansas
u o

<
R

| JasSM
parusyud
~Anoas

IBAIDEG

SOl TASM >
paindasun Aemaen { 09
0

i<

-

JOIRNSIUIWPY

819

_Ipujiey Buiped)

L

109

019 foz&.wz
ajeasodio)

US 9,130,897 B2

Sheet 4 of 6

Sep° 8, 2015

U.S. Patent

SIRMNH .
ﬂmnmw_ M v 1SN 4
H3pun 104 mco_uw.i.nb,
‘saaysma e
JuBI3YIG T

.

B3R ACMBISD M !

T sdiysuoneas 3gnng
8 uonezeblo FULIBLIP

upop

‘Rempyen
atbws

Td dBus wﬁ@, .

 drysuoneier .
¢ smay aEmW’ e

9 "DIA

8IS

908§
21035 Aoy

004 abessop
a4nsas ” »c&md,
! dv0s oBessap
AB3ALI0G
Aemajen

(4173
juswnsog u,-,‘-,ﬂ.w:u
Asfjod Tvd

,397 B2

US 9,130

Sheet 5 of 6

Sep. 8, 2015

U.S. Patent

fivgnos yodausl 4ING § -
fugnor podsuen d1iH B -

Buynos ebesaa @&

usidiue g B -
ameudis TNX B

AUnIos T B &

uodsuen18s ¥ -

{510 AUnasg Jade Jotsues) B mw

183 B3 USHOL SM me :
J18IDQ U0 L BM Awé :
2iSwa UL M &,
seaypes wand diiH 8,
uing 1839010 d1iH %r

HINg JISvE diiH %@ -

iSpolad] udRSgusliny %, &
m&m_asﬁﬁzom o) .@W

siapiacid Suspl £

sdnog g .@
SIBS(Y) &
mcoemwm«?_am nvm

L DId

|

006
806 .
S AT TR ﬂ@ PR
- B

WO U INOX 110K A6E1 Y HBIFS $5RAY JOSLUQ WRUATBURK OSH U B AN

(SU) Apaog by ysatsny £ &
PG NNy [T &
ORI AL £ 1R
sopvaniApRaR G B

SLBIOY TUIOTBOICY Zmhoy gy

US 9,130,897 B2

Sheet 6 of 6

Sep. 8, 2015

U.S. Patent

AR DAY »
IBAIBG AIDIOENG BUGUNG o

6 DId

96§ -
Anusey A 86¢ 09<
! X
y68 T / /
/ ubig/oug FRPIAA
768 Bu3 WIISASGNS POUSINSIBG S i B E AR YA
aubu JRuRnuT A
uonesiday N 6C +ebeury aoullsisudg e SANIAIRG 9¢¢
™, . sydesBoydAn e
/ < UL wm/w 2
\.\. - ”.e ﬁquQpUX , M A
IS ' JOS5220.44 Ersds | 80 HEEAOWIBY S EGAISE BEET
- ket - SA UBA: { 3
IASM JE I P HTIET 5] EOYRD bt It aWdvos
BT V0S seq jpulagug SABO5K - jlit-) uwmm 3 Tadd »
TdId * = Hd R
waw JODIAOA - apeIn
saviammg | | ypny pue | (Ggg oM Ry T rr3a’
28 ww_umm o3dAiD HubBoT AJIUSPT {8307 Isd {2201 Buibfoy Y30 Wat «
TAU/PE-XYL
24/ z,xi. * ——— T s pSsa— W 1N
3N b subug | m i ﬁ | Aanod-Sm > Rod N "
! | i i {]] H
| ouonmoang [| emumdo el vempsey | L o | Jenjosoy |
PoAmogd |~ Awmog | v%ﬁm, UGREIOD™G l\\ oy |
| e] s el | m
fBuissaos wmmmmw sogemubnY wc_mwwuo\. mmmmww
85 d W S-GA% Wik YOS d W
ac | seoinias uswobeuey mw,w\ wWPSASNG BIOSUOD
. =
89"
TiY dvOs papudijeu NS
z .\\
cm\m 19AIDS ABMBleD u=by dvos

01§

US 9,130,897 B2

1
SYSTEM AND METHOD FOR SECURING
WEB SERVICES

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Application No. 60/506,759, filed Sep. 30, 2003.

FIELD OF THE INVENTION

The invention relates to the field of distributed computing
in a client-server environment, and more particularly to a
system and method for efficiently securing Web services.

BACKGROUND OF THE INVENTION

Web Services

The term Web services is commonly used in reference to a
modular collection of web-protocol based software applica-
tions that can be mixed and matched to provide business
functionality through an internet connection.

With Web Services, information sources become compo-
nents that you can use, re-use, mix, and match to enhance
Internet and intranet applications ranging from a simple cur-
rency converter, stock quotes, or dictionary to an integrated,
portal based travel planner, procurement workflow system, or
consolidated purchase processes across multiple sites. Each
is built upon an architecture that can be illustrated as a stack
of layers as shown in FIG. 1.

Each vendor, standards organization, or marketing
research firm defines Web Services in a slightly different way.
Gartner, for instance, defines Web Services as “loosely
coupled software components that interact with one another
dynamically via standard Internet technologies.” Forrester
Research takes a more open approach to Web Services as
“automated connections between people, systems and appli-
cations that expose elements of business functionality as a
software service and create new business value.”

Although there are a variety of Web Services architectures,
Web Services, at a basic level, can be considered a universal
client-server architecture that allows disparate systems to
communicate with each other without using proprietary client
libraries.

An advantage of the Web services architecture is that it
simplifies the development process typically associated with
client/server applications by effectively eliminating code
dependencies between client and server and the server inter-
face information is disclosed to the client via a configuration
file encoded in a standard format Doing so allows the server
to publish a single file for all target client platforms.

Unfortunately deployment of Web services is hampered by
the problem of providing secured access to these services, and
describing policies governing how Web services and their
client applications interact.

Current security implementations and mechanisms intro-
duce brittleness and tight coupling between the client appli-
cations and the Web service, leading to solutions that are not
easily reusable, or that require expensive re-development
when security policies or agreements change. Furthermore,
current platform vendors have not considered how both sides
of Web services transactions (provider and consumer) should
be coordinated.

Service Oriented Architecture (SOA)

To support these Web-Services in the Internet, a new archi-
tecture was defined, SOA, the Service Oriented Architecture.
This new architecture describes how Web-Services may be

10

15

20

25

30

35

40

45

50

55

60

65

2

found by users, how a potential user can access such Web-
Services, and a language describing the interfaces to these
services.

The communication protocol for these Web-Services is
also defined by a new protocol, called Simple Object Access
Protocol (SOAP).

SOAP is a way for a program running in one kind of
operating system to communicate with a program in the same
oranotherkind of an operating system by using preferably the
World Wide Web’s Hypertext Transfer Protocol (HTTP) and
its eXtensible Markup Language (XML) as the mechanisms
for information exchange. Since Web protocols are installed
and available for use by all major operating system platforms,
HTTP and XML provide an already available solution to the
problem of how programs running under different operating
systems in a network can communicate with each other.

SOAP specifies exactly how to encode an HTTP header
and an XML file so that a program in one computer can call a
program in another computer and pass it information. It also
specifies how the called program can return a response.

One of the main principles of an SOA is the concept of
loose coupling. In a loosely coupled system, connections and
interactions between various components are flexible enough
so that changes in the interface of one component will not lead
to a breakdown of another component. In order to enable
loose coupling, three main Web services standards have
evolved, all based on the fundamental XML standard. Each of
these three standards are illustrated as a stack of layers in F1G.
1 and are:

SOAP. As mentioned above SOAP is XML based messag-
ing standard, defining an envelope element as a container for
a header element and a body element, in a request-response
interaction model. Using XML on the wire for messaging
hides technology choices from both ends of the conversation.

WSDL (Web Services Description Language). An XML
based Interface Definition Language (IDL) similar to other
IDLs defined for example in the CORBA architecture. A
WSDL document described the functional aspects of a ser-
vice, such as the format of the input and output messages, and
the URL to which the SOAP request should be sent to invoke
the service.

UDDI (Universal Description, Discovery and Integration).
An XML and SOAP based API specifications for service
description publication and discovery. A UDDI server acts as
a registry for Web services, and provides a mechanism to
locate services and retrieve their interfaces.

While the platform and tools vendors have made available
a variety of technologies to handle the layers in the Web
services stack (such as SOAP and WSDL toolkits and UDDI
implementations), the bulk of the effort has been directed to
the provisioning, of the various Web services, with the cre-
ation of deployment environments and management tools.

Unfortunately, deployment of Web services is hampered by
the problem of providing secured access to these services, and
describing policies governing how Web services and their
client applications interact.

For example, current security implementations and mecha-
nisms introduce brittleness and tight coupling between the
client applications and the Web service, leading to solutions
that are not easily reusable, or that require expensive re-
development when security policies or agreements change.
Furthermore, current platform vendors have not considered
how both sides of Web services transactions (provider and
consumer) should be coordinated.

Current technologies address security issues, by providing
two kinds of solutions, both geared mainly to Web service
providers. These include tools for developers, making secu-

US 9,130,897 B2

3

rity a software development problem and static firewall solu-
tions that perpetuate the brittleness of tight coupling between
systems. Very little has been done to address the more prac-
tical, real-world, aspects of securing, coordinating and cus-
tomizing Web services in a dynamically at run-time, espe-
cially in an environment where typically a Web service will
have multiple consumers with varying security requirements
and policies.

Technologies integrating all layers of the Web services
stack (including SOAP, WSDL and UDDI) for both service
provider and consumer are missing. This lack of solutions
makes it difficult for many organizations to justify a full and
public adoption of Web services technology, regardless of its
eventual promise.

Tight Binding of Services to Requester

In FIG. 2, there is shown schematically, the roles and
sequence of events in an SOA. A Service Provider publishes
a description of its service to a Services Broker, typically a
UDDI server or node which operates as a repository. This
service description also typically includes a WSDL docu-
ment. Before the client can request the service it need to find
the provider. Upon request, the service broker (UDDI node)
returns a document that allows the client to locate the particu-
lar providers interface then bind to the provider. It then
invokes the service through the bindings described in the
interface. All interactions between the three entities are typi-
cally SOAP requests.

One of the limitations of this architecture occurs when
issues of security and policy are involved. In typical real
world scenarios, services that are provided between business
entities, whether within the departments of a particular orga-
nization, or between business partners, are not anonymous.
Instead, they are governed with sometimes strict security
policies and maybe even different usage and Quality of Ser-
vice (QoS) policies and agreements.

Despite recent advances in tools and infrastructure, the
state-of-the-art in Web services security remains laborious
and prone to error. Security best practices are ill defined.
What little implementation exists is littered throughout the
Web services stack, appearing in the transport layer, at the
application server, and in every individual Web service pro-
tocol and implementation. This creates a number of vulner-
abilities and multiple points of failure that conspire to com-
plicate the developer’s and the administrator’s jobs. Once an
administrator deploys a service, security becomes instantly
entrenched and difficult to manage. Any change an organiza-
tion makes to its security policy, any alteration made to sig-
natures, encryption, or even server location, seems to neces-
sitate a costly new development effort, both on the server side
and on the client side. These issues combine to make solutions
that are simply not reusable.

Implementing security policies into the code of the Web
service is undesirable for many reasons. Web service and
XML security is a complex matter and very error prone,
especially for non-expert developers, and will add a large
amount of time and expense to any Web services deployment
project; policies can and will change over time, leading to
more time and expense and possibility of error any time the
code base has to be modified; and finally, as partners are
added or removed, or their individual policies are modified,
the Web service code, with the security code embedded in it,
will become extremely difficult, if not impossible, to manage.

But even if all those obstacle were surmountable, a major
issue remains: by implementing complex, but necessary, poli-
cies onthe Web service side, the burden of implementing your
security is placed on the client application. This is a very
serious responsibility, and in many cases consumers of the

10

15

20

25

30

35

40

45

50

55

60

65

4

Web service are not up to the challenge of implementing the
required security. More importantly, however, any change in
policies on service side will need to be mirrored on the client
side, in order for the system to remain operational.

There remains a need for a solution that both manages and
coordinates security, end-to-end across a Web Services inte-
gration lifecycle and which is a centrally administrable, stan-
dards-based solution that restores fine-grained security con-
trol and visibility to IT managers at the Web services
application layer.

SUMMARY OF THE INVENTION

A general aspect of the present invention comprises a sys-
tem for enforcing policies on access to Web services on one or
more server computers by one or more client computers, the
computers connected to one or more networks through one or
more network interfaces, each computer having one or more
memories and one or more central processing units (CPUs),
the system comprising: one or more logical expressions that
define constraints on one or more service releases; a gateway
process receiving service request messages from one or more
of'said clients for 1) identifying said service request message,
ii) processing said identified service request message in
accordance with one or more of said logical expressions
associated with the requested service and iii) providing
access to said requested service if the constraints are satisfied.

A further aspect of the invention includes an agent process
associated with one or more said clients, for receiving service
request messages from an associated client, said message
destined for a requested service and applying to said received
request message one or more of a subset of said logical
expressions associated with the requested service for for-
warding to said gateway process.

A further aspect of the invention provides for a method for
enforcing policies.

In a specific aspect an embodiment of the invention con-
sists of four architectural components:

i) a Gateway server, which is a network appliance that
processes SOAP (define) messages destined for protected
Web services. The Gateway coordinates and enforces policies
that apply to these services, and coordinates and negotiates
security policies with requesters (client).

ii) a Policy Manager, which allows administrators to:
establish trust and identity sources that integrate with existing
infrastructure; use these sources to define security policies
through a declarative policy language of assertions; and
modify existing policies and propagate them to existing cli-
ents. Through the policy Manager, Web services security
becomes an easy, repeatable and reusable administrative task
instead of a complex custom development problem.

iii) a SOAP Agent, which establishes a PKI (public key
infrastructure) based trust relationship with one or more
Gateway Servers, and resides on each Web service requester.
The Agent automates the negotiation of security policies
between the Gateway and its clients. Client systems send their
unadorned SOAP requests to the local Agent, which then
takes care of applying the necessary headers and transforma-
tions required by the applicable policies. Changes to security
policies administered at the Gateway are propagated to the
appropriate Agents, which then apply the changes to the
messages destined for the Web service in question. Although
optional (clients can custom develop applications that con-
form to the Gateway security policies), the Agent is an inte-
gral part of providing true loose coupling between Web ser-
vices and their clients.

US 9,130,897 B2

5

iv) a Policy Assertion Language, (PAL) which ties the three
other components together, and provides a language to
express the policies created by the Manager, implemented by
the Agent, and enforced by the Gateway.

Another aspect of the present invention is to dynamically
overlay security on top of existing Web services transactions.
In the present model, security is declarative, instead of pro-
grammatic; it shifts the responsibility for implementation of
security from each individual software developer, and places
it in the hands of a security administrator. Declarative Secu-
rity allows for late, runtime binding to an organization’s
security policy. This allows an administrator to change policy
at any time, and have the update instantly applied to all
transactions governed under the policy, all without moditying
a single line of code.

The present invention provides a coordinated declarative
security model that can be applied not only to the service
provider side but also the consumer side of a web services
transaction.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the present invention will now be
described by way of example only with reference to the
following drawings in which:

FIG. 1 is schematic diagram of the layers in a service
oriented architecture;

FIG. 2 is a schematic illustration of the roles in a SOA;

FIG. 3 is schematic diagram of the architectural compo-
nents in a system of the present invention;

FIG. 4 is a schematic illustrating augmenting an WSDL;

FIG. 5 is a schematic diagram showing the operation of the
SOAP agent;

FIG. 6 is a schematic diagram showing a SOAP agent
having multiple trust relationships;

FIG. 7 shows a screen layout of a policy manager interface;

FIG. 8 is a schematic showing a list of objects in a policy
manager; and

FIG. 9 is a schematic diagram showing the architecture of
a SOAP agent and Gateway server according to the present
invention.

DETAILED DESCRIPTION OF THE PREFERRED
EMBODIMENTS

In the following description like numeral and references
refer to similar structures and functional blocks in the draw-
ings.

Referring to FIG. 3 there is shown the components for a
system 500 for securing Web services 501 according to a
general embodiment of the present invention. The system 500
includes a client domain 502 and a Web service domain 504
coupled via the Internet. Communication between the
domains are via SOAP messages. Single domains are shown
for illustrative purposes only. The client domain includes the
client computer 503. The system 500 comprises three major
components: a gateway server 506 that resides behind a con-
ventional firewall 508 in the Web service domain 504; a
management application software 508 for developing secu-
rity policies and managing all Web services (the Policy Man-
ager); an agent 510 located in the client domain 502 behind a
firewall 512 that secures a transaction according to the policy
in effect, before a SOAP message is released to an insecure
network (the SOAP Agent); and a programming language that
allows administrators to construct complex usage policies
and attach them to the protected services (the Policy Assertion
Language). In addition the system includes PKI (public key

10

15

20

25

30

35

40

45

50

55

60

65

6

infrastructure) certificate management components 518 and
5520 associated with the client and Web services domain
respectively.

The Gateway Server 506 consists of a high performance
server executing core messaging, security and management
software. Typically residing inside a DMZ, which contains
devices accessible to Internet traffic, the Gateway supports an
active standby configuration with database synchronization
capability.

Collections of Web services 501 can be centrally managed
and audited through the management application 508 linked
to the Gateway 506. The Gateway 506 may also communicate
with an existing directory service 522. The Policy Manager
allows administrators to decouple policy control from a ser-
vice’s programmed business logic so that no manual configu-
ration or integration of the Web services themselves is
required.

Each of the component functions will now be discussed in
detail below.

The Gateway Server

The Gateway Server 506 acts as a gatekeeper mediating all
Web services activity entering an organization. It is a software
engine to create, publish, and enforce policy for all Web
services. It shields access to internal services, ensuring that
only those messages that pass all of its security tests are
ultimately forwarded to the protected service. The Gateway
506 provides administrators with a single point of manage-
ment, regardless of whether an organization has a single,
standalone Gateway or a cluster of parallel systems for high
availability. It centralizes the security management of all Web
services using a single, intuitive and consistent user interface,
thus eliminating any chance of a configuration error that
could compromise the security integrity of the entire network.

The Gateway 506 is fundamentally a message-processing
engine. Every Web service published through the Gateway is
subject to policy; the Gateway identifies and processes every
SOAP message under the policy registered against that ser-
vice. Internally, services and operations are categorized
according to their WSDL representation, which fully
describes a Web services APl (application programming
interface) as it is bound to a transport. The WSDL represen-
tation defines how the system can identify a message, through
URN namespace, HT'TP (hypertext transportation protocol),
a SOAPAction header, or binding to a specific URL (uniform
resource locator).

Clustering for Performance and Availability

The Gateway includes a number of different, flexible
deployment options. Each gateway can operate indepen-
dently, in stand-alone mode. Organizations requiring high
availability and scalability can deploy Gateways in redundant
clusters. Clusters members are all synchronized to provide
identical views of the policy store, the internal identity pro-
vider, and any other common system configuration data.
Simplified PKI Deployment

The downfall of many PKI systems in large organizations
has been the complexity and expense associated with setting
up a centralized system that interfaces with a diverse number
of different applications and clients. This is further compli-
cated by gaps in the standards that limit interoperability
between applications. In contrast, the Gateway Server 506 of
the present invention operates as its own CA (certificate
authority). The integrated CA, provides simplified distribu-
tion of certificates to clients, instant and automatic checks of
certificate status and revocation, and intuitive management of
the system. In a Gateway cluster, a single appliance is del-
egated to being the root CA; this root appliance is responsible
for processing all client signing requests, and creation of all

US 9,130,897 B2

7

SSL (secure socket layer) certificates in the cluster. In one
embodiment the root CA’s private key store is password
protected and encrypted using a triple DES cipher. For added
physical security, it may be persisted to a removable USB
dongle that administrators can be safely separate from the
appliance during regular operation. Other encryption tech-
niques could equally well be used.

Simplified Management of SSL.

The Gateway 506 of the present invention greatly simpli-
fies the management of SSL. in Web services transactions.
SSL is an assertion in a policy that an administrator can
choose to activate at any time. Each Web service 501 can use
SSL between the client and the Gateway Server, and/or
between the Gateway and the downstream service itself. Hav-
ing the ability to disable SSL on the last mile is especially
important to many organizations. This eliminates the need to
have server-side certificates on every internal system (which
is expensive and a significant administrative burden), yet it
still protects the segment of the connection that traversed the
public Internet. It also eliminates the need to reconfigure
existing Web services to support SSL, which often requires
clumsy code modification, changes to server configuration,
and local, client-side management of certificates in a trust
store. Finally, SSL is computationally expensive. A common
rule of thumb when sizing Web servers is that SSL. increases
processing burden by 30%. In a large installation, this can
become a significant expense.

Centralizing SSL processing to the Gateway Server 506
greatly eases administration and cost, since only a single
certificate is required (included with every Gateway Server).
The Gateway Server 506 architecture allows it to accept a
number of third-party SSL acceleration boards. Experience
on high volume web sites has proven this a cost-effective
solution to increase transaction throughput and promote over-
all system scalability.

The Gateway Server 506 can also make use of SSL meta-
data when configuring security policy. HTTP basic authenti-
cation headers can be a source of credentials for any authen-
tication assertion. Administrators can enable client-side
certificate authentication—an optional feature of SSL that is
well suited for sites requiring strong client authentication. A
standard certificate authentication filter accepts and validates
all client-certificates exchanged over SSL.

This fine-grained control provided by the present assertion
framework is especially important for installations that sup-
port multiple security models. For example, an organization
may simultaneously support legacy SSL transactions with
one trading partner, and newer WS-Security based policy
with another. Although the two transactions mine credentials
from different sources, the Gateway 506 uses the same asser-
tion and pluggable provider to authenticate against the local
identity server. This greatly simplifies administration, and
lessens the chance of introduction of a security hole through
oversight.

Augmenting UDDI and WSDL

UDDI and WSDL are both important parts of Web ser-
vices; however, both neglect to address security in a useful
manner. The present invention addresses this problem. The
UDDI uses SOAP as an access method; thus, the same finely
grained, flexible security model for regular Web services is
applicable to any private UDDI registry. Accordingly, the
Gateway Server can act as a secure proxy and provide identity
based access policies to any internal UDDI server, thus mak-
ing good on the promise of service publication to trading
partners. Furthermore, through the use of transformation fil-
ters, UDDI query responses can be personalized to fit the
requester, providing true UDDI proxying. This finally

10

15

20

25

30

35

40

45

50

55

60

65

8

extends all security elements to UDDI, including authentica-
tion, authorization, access control, confidentiality, personal-
ization and even non-repudiation.

WSDL provides a means to describe a service in both
abstract and concrete terms, but it offers nothing to accom-
modate security. Referring now to FIG. 4 there is shown
schematically a typical Web services application system 600,
according to an embodiment of the present invention, illus-
trating message flow when a client downloads a WSDL
description through a Gateway, either in response to a UDDI
query, or as a standalone URL. The system 600 shows a
trading partner client domain 601 having an administrator
computer 602 coupled through the SOAP agent 510 to the
interne. The Web services domain identified as the corporate
network includes the gateway server 506, a web server 608
and a UDDI registry 610. When a client downloads a WSDL
description through the Gateway, the Gateway can optionally
augment the file to describe a secure implementation of the
service. The simplest augmentation is simply a rewriting of
the internal URL in the soap: address element of a SOAP
message inside the service element to point to the Gateway
instead of the actual physical service location. This assists in
the automatic generation of stubs or proxies for the remote
service, ensuring that they route requests through the Gate-
way and thereby subject to the policy 612 in effect. This is
termed Endpoint Address Translation (EAT), and may be
considered to be an application-level security analog of NAT
(network address translation) and thus even more important
to a mature security model.

But WSDL without a concrete security policy describing
how to access the service is still not a complete solution.
Ideally, the WSDL augmentation should describe the security
expectations of the Gateway for access to that service. Such as
for example, does this service require authentication? What
kind of credentials are required? Are they rendered into HT'TP
headers or WS-Security headers?

Thus, the Gateway can bind a security policy 612 to a
WSDL description, and publish this aggregate description
618 to its clients. The combination of these two documents
fully describes a secure version of the service. This provides
a standards-based method for adding policy assertions to
WSDL that is compliant with existing client-side code gen-
eration tools, and “future proofs” the investment against the
time when security-aware, third-party code-generation
become available.

Credential Chaining

With the proliferation of corporate Intranet sites, organiza-
tions quickly identified the need to unite all their disparate
credentials under a single, global ID. Web services share the
same challenge, and the present invention provides a solution
to this issue. Each Web service can be configured to authen-
ticate against a global ID (using any of the credential sources,
such as basic, certificate, digest, etc), which is then chained
(or mapped) to credentials appropriate to a local service ID,
such as identity-based local database accounts.

The Gateway can also consolidate multiple incoming iden-
tities into a single downstream identity, such as a limited
access database account. This removes the burden of manag-
ing multiple identities, which are likely to change frequently,
on the downstream service. For example, whenever the
remote credentials change, the change need only be reflected
on the outgoing Gateway, not the actual client. This is a
simple, centralized administration task, rather than a pro-
gramming challenge and can realize tremendous savings dur-
ing deployment of a large number of clients.

US 9,130,897 B2

9

The SOAP Agent

Referring to FIG. 5 there is shown a schematic diagram of
the client side of a Web services system. The gateway is only
half of a security solution. Without this support, client-side
programmers would be forced implement their own security
against a security policy set by the administrator, a difficult
and tedious task which is also prone to error, and expensive to
maintain. For example if a VPN server came with no clients,
and simply expected that users would build their own IP
security implementations. This would clearly be untenable
and unsustainable, but it is not unlike what many Web ser-
vices firewall solutions expect.

The SOAP Agent simplifies the task of layering security
onto Web services transactions. The Agent is the key to the
late-biding, declarative security model of the present inven-
tion. The Agent understands and follows the policy directives
of'the Gateway; policy changes made by an administrator are
instantly loaded and applied on the Agent without changing a
line of code in the actual Web services application. The Agent
also manages client-side certificates issued by a Gateway,
simplifying this complex process tremendously over existing
browser and email models and providing the benefits of
strong authentication, digital signing, and message-based
encryption.

As shown in FIG. 5, the SOAP Agent intercepts a Web
services transaction (unsecured message 702) before it is sent
across the network to the Gateway. The Agent loads policies
(the PAL policy document 708) from the Gateway 506 the
first time a service is called. These policies are specific to the
clients being serviced by the agent and are normally a subset
of the policies associated with the services protected by the
gateway. For every SOAP message the the WS-Security stan-
dard, and that the entire message body signed by the client’s
private key. Agent receives, it decorates the message accord-
ing to the rules defined in the policy. For example, the policy
may demand that the message body be encrypted with AES
encryption under The Agent will interpret this policy, and
modify the transaction accordingly before sending it down-
stream to the Gateway.

Policies are cached on the Agent, and are reloaded when-
ever a transaction fails because a policy was changed on the
Gateway. In this manner, security policy changes are instantly
adhered to by all clients. For example, suppose a Web service
is deployed during a testing phase without any message or
channel encryption to aid in debugging. Once testing is com-
plete, the security administrator can select SSL-based secu-
rity in the policy for that service. The Agent will then be
refused entry once (because it is not compliant with the cur-
rent policy), prompting it to reload the policy description and
continue, this time using SSL for the connection. All this will
happen with no code changes on the client—and indeed, a
user would not even be aware that a significant change in
transport occurred.

Of course, not all policy assertions are appropriate for
export to the client. Authorization lists, for example, are rel-
evant only to the Gateway, as these could be exploited by a
hacker ifthey were made public. Thus, the Gateway publishes
a filtered “view” of the policy in effect, describing only what
morphological changes are required of the message or trans-
port, and nothing about identity expectations, internal routing
information, etc.

The SOAP Agent can be run in two different modes: one
standalone, command-line driven, appropriate for server
installations; and one with a rich Graphical User Interface
(GUI) 704 for more interactive users. In both modes, user
intervention is minimal or non-existent, depending on secu-
rity requirements. For example, passwords to unlock a client-

10

15

20

25

30

35

40

45

50

55

60

65

10

side certificate or credentials to assert an identity on the
Gateway can be entered when the Agent is started, or they can
be added only as needed: the Agent will launch a popup query
for credentials the first time they are demanded by a remote
server.

Web services clients should not require code modification
to use the Agent. Enabling an application to make use of the
Agent’s services is as simple as changing the URL indicating
the target Web service to point to local host instead of a remote
server. For the majority of Web services development kits,
this is easily accessible in an application property file (it is
common for the target URL to change frequently as an appli-
cation is moved from development to testing to deployment,
so this property should be easily accessible). In some
instances in which client stubs are automatically generated
from a WSDL file describing the service, a minor modifica-
tion to the location attribute of the soap: address element can
be applied. This can be done either automatically by refer-
encing the WSDL through the Gateway WSDL query and
augmentation service, or by modifying the WSDL source file
and re-applying the stub generator.

A single SOAP Agent can also be bound to multiple Gate-
ways as shown schematically 800 in FIG. 6. These can be
within a single organization, but under a single PKI admin-
istrative domain. For example, a large organization may have
multiple Gateway clusters in different departments, united
under a single PKI root certificate. In this case, the Agent is
configured to trust the single organizational root certificate
and is bound independently to the departmental clusters. A
binding can also co-exist within the same Agent to a com-
pletely separate organization, this with its own independent
root certificate. Transactions will simultaneously be routed to
the correct Gateway, and the Agent will ensure that the appro-
priate certificates and trust relationships are applied to the
appropriate transactions.

The Policy Assertion Language

Web services are invoked through SOAP messages. The
present system inserts itself into a Web service’s SOAP
stream, augmenting it, transforming it, and inspecting it. The
processing algorithm that the SOAP Agent and Gateway
Server apply to a SOAP stream is what is termed Policy.
Policies or logical expression may consist of chains of con-
crete rules, preconditions, and tests that Web services trans-
actions are subject to if they are to pass through the Gateway.
The Gateway securely publishes a subset of its policy expec-
tations that are appropriate to each SOAP Agent to allow the
Agent to prepare SOAP messages into a form that the appli-
ance will accept (subject, or course, to the tests embodied in
the policy).

Every service published to the Gateway Server has a policy
attached to it. These policies are implemented as a collection
of policy assertions using a Policy Assertion Language
(PAL). An assertion represents a statement about the state or
content of a message. Usually, every assertion must resolve to
either true or false. For example, an authentication assertion
might state: this message must provide HTTP basic creden-
tials. A routing assertion might declare: route this message to
the downstream URL https://ws2.layer7tech.com/Stocks/
quoteService.

An assertion then is the embodiment of a processing algo-
rithm and may contain some additional properties. In the first
example, the processing algorithm extracts the HTTP Autho-
rization header from a SOAP message bound into an HTTP
POST, as per the SOAP specification; in the second, it is to
POST the stream to the downstream URL. The first example
has no set properties but clearly has state defined as a side
effect—that is, the extracted credentials. In the second

US 9,130,897 B2

11

example, the downstream URL is a property associated with
the assertion. Properties of an assertion are instance variables,
not static; as we will see, they can take on different values in
different contexts.

Identity is another common assertion. For example, an
identity assertion might state that: the message must contain
user Alice’s credentials. In this case, the processing algorithm
is to validate the credentials against an identity server, such as
a corporate-wide LDAP server. The property for an identity
assertion is the unique identifier for user Alice, and of course
a reference to the identity server hosting this identity.

But assertions on their own can lead to numerous ambigu-
ities. For example, how can one validate an identity assertion
if an associated authentication assertion, which declares
where to locate credentials in a message, is not evaluated
first? Similarly, if a routing assertion executed prior to vali-
dation of an identity assertion, the policy containing these
would not be very effective if its intent is to protect the
downstream service from access by unauthorized users. To
remedy this, out technology provides a very rich and unam-
biguous processing model that governs how policy is applied
to a SOAP message (the Gateway SOAP Processing Model).

The PAL provides a rich policy expression language where
policies are represented as a tree of policy assertions. Internal
nodes of the tree are called composite assertions and provide
a mechanism to express conjunctions (logical AND) and dis-
junctions (logical OR). These composite assertions collect
sub-assertions as an ordered list of children, where the order
defines an explicit processing model. For example, a compos-
ite assertion might declare that: all child assertions must
evaluate to true (AND). Under this processing model, every
child is evaluated, from top to bottom. Execution of sub-
assertions is suspended if any assertion evaluates to false, and
the resulting composite assertion evaluates to false. Another
composite assertion states: at least one assertion must evalu-
ate to true (OR). Under this processing model, every child
assertion is evaluated until one resolves to true, at which time
further execution of any remaining children is suspended and
the composite assertion returns true.

Root Policy Assertion

At the root of the policy is a composite assertion that
declares that all immediate children must evaluate to true. The
Gateway Server evaluates each child in order, from top to
bottom; ordering is important—as observed above, there are
circumstances in which an assertion is only relevant if a
previous assertion has already been evaluated and any side
effects of its operation are available for inspection.
Transport Security Assertion

The first child assertion declares that SSL transport is a
requirement for this message. The Gateway validates that this
is the case, and proceeds to the next child assertion. Suppose,
though, that the sender delivered the message using regular,
clear text HTTP without SSL. In this circumstance, the SSL
assertion evaluates to false, and the composite assertion at the
root must also resolve to false. This results in a rejection of a
message by the Gateway, which indicates this to the client in
a returned SOAP fault.

Authentication Method Assertion

The next child assertion demands that the message contain
HTTP basic authentication credentials. These are in a known
location, the HTTP metadata, and are extracted from the
message and kept for later processing.

Identity Assertions

The next child is not a leaf node, but another composite
assertion—this one declaring that at least one of the child
assertions is true. This composite assertion exclusively con-

5

10

15

20

25

30

40

45

50

55

60

o

5

12

tains identity assertions—obviously, it is implementing an
authorization and authentication test.
Routing Assertions

The final assertion is a routing assertion. When this is
executed, the message is sent to the URL set as a property of
the assertion. This operation may include credentials for the
downstream server—a feature called credential chaining—
and may use SSL to ensure confidentiality, integrity, and
server authentication for the downstream transaction. If this
final assertion evaluates to true, indicating successful trans-
mission of the message downstream, then the root assertion
also resolves to true, and any data received from the routing
assertion is returned to the calling client.

Identity Based Policy Modeling

Modeling policy as an ordered tree of assertions can be
tremendously powerful and flexible. Deep, nested structures
can be constructed to define a logical message-processing
model that accommodates extremely complex service defini-
tions and implements multi-step security processing require-
ments. For example, identity-based polices, in which a dif-
ferent processing model is applied depending on the proven
identity of the requester, are as simple to model as a sub tree
of the relevant assertions, subordinate to each identity asser-
tion.

In this light, policy becomes much more than a means for
defining simple security definitions: it can make declarations
about reliability, transaction boundaries, routing through
intermediates, message transformation, etc. It also forms the
basis of negotiation between trading partners, where security
expectations provide options that need to be resolved into a
security contract—much like the SSL cipher negotiation—
under which trading can be safely conducted.

By participating in both sides of the transaction, using
policy to coordinate each side, The Gateway Server allows
Web services applications to be completely insulated from the
uncertainty of emerging standards, while providing the
beginning of true loose coupling between services.

PAL Policy Assertions

PAL assertions are implemented using a Java interface

definition, and it is therefore very easy to extend the basic set.

CREDENTIALS

HTTP basic authentication

HTTP digest authentication

HTTP client-side certificate authentication
WS-Security basic authentication

WS-Security digest authentication

WS-Security client-side certificate authentication
IDENTITIY

Identity in internal provider
Identity in external LDAP provider
Transport protocol

Routing information

SECURITY

SSL transport enabled
WS-Security signature validation
WS-Security encryption/decryption
COMPOSITE ASSERTIONS

All assertions must resolve to true (logical AND)
At least one assertion must resolve to true (logical OR)

The Policy Manager

Referring to FIG. 7 there is shown a screen layout of the
Policy Manager GUI 900 which provides a single unified
view into the Gateway Server 506. Its primary purpose is as a
security policy editor, providing a means to rapidly set up and

US 9,130,897 B2

13

manage a tree of security assertions associated with a Web
service. In addition to policy editing, the Manager is the
primary interface to manage users, configure the Gateway,
and monitor its continuous operation.

A security administrator can direct the Policy Manager 900
to manage any Gateway Server in a cluster; any changes made
to the Gateway configuration through the Manager will be
instantly propagated among all other peers in the cluster.
Administrators simply need to know the URL of the Gateway
they wish to manage. The Gateway is pre-configured with a
single administrative identity with membership in an admin-
istrators group; additional administrative identities can be
added as needed, using the Manager. All communications
between the Manager and the Gateway are fully encrypted,
and takes place over port 443. The Gateway publishes Web
services interfaces for all major administrative operations,
which provides a path to fully integrate Gateway manage-
ment and policy creation into third-party network manage-
ment tools.

Initial View

The Policy Manager GUI 900 is a rich policy environment,
supporting multiple window panes, drag-and-drop operation,
and multiple wizards to assist in rapidly configuring Web
services security. It can be installed on either a Windows or
Unix system using a single-click installation wizard. The
Manager has an identical look-and-feel on both operating
systems, simplifying system migrations and providing maxi-
mum deployment flexibility for operations staff.

The upper left frame 902 of the GUI contains the palette of
objects that exist on the system. New objects can be added,
modified, dragged into policies, etc. The lower left frame 904
lists all the services under management in the system. The
right pane 906 is reserved for policy editing. At startup, this
frame also contains several convenience links that launch
service and user-oriented configuration wizards.

Building a Policy Using a Service Wizard

Administration overhead can be an impediment to busi-
ness; it can also be the cause of security holes. Suppose a
company is in an aggressive expansion mode, rapidly adding
new trading interfaces to its core systems. Their need for rapid
deployment of these new services to trading partners—driven
by market fundamentals—is often at odds with the adminis-
trative requirements of tight security. In these conflicts, secu-
rity too often loses.

The management console 508 includes rapid but secure
deployment of Web services, using wizard interfaces and
dynamic discovery technology. Rather than forcing an
administrator to configure every new Web service manually,
the Policy Manager allows administrators to discover new
Web services published in WSIL files, or in WSDL descrip-
tions published at any URL, whether on the Web, or on a file
system. Discovery mechanisms for UDDI, as well as plug-ins
for major commercial and open-source application servers
are used. These will support the export of service descriptions
for every deployed service—a great advantage for organiza-
tions without UDDI.

The wizard interface allows for immediate security provi-
sioning of newly discovered Web services using generic
policy templates. Administrators can fine-tune the security
policy of a service at any time, such as changing a routing
parameter, or adding a new user to an authorization list.

A simple example is using the wizard to securely provision
a new service—in this case, a simple “Hello, World!” appli-
cation—that resides on the internal network. This is a basic
service, with no built-in security. Suppose that the adminis-
trator wants to make it available to outside trading partners,
but corporate security guidelines dictate that all external sys-

20

25

35

40

45

55

14

tems must authenticate on the corporate LDAP directory
before being granted access to an internal application.

As a first step, the administrator enters the URL for the
WSDL describing the service. The Gateway Server uses
WSDL as its internal representation of a service. The WSDL
document is used to determine how to uniquely identify the
service from its message (e.g. is the HTTP SOAPAction
header used, URN namespace, incoming URL, etc), as well
as describing the internal URL where the service resides. In
the service pane of the Manager, where all the services under
Gateway administration are listed, the entire WSDL descrip-
tion is available for review.

Note thatifa WSDL description does not exist, an alternate
wizard step exists to allow an administrator to describe a
service based on only minimal information.

Next, the administrator can override the URL where the
service resides. This is especially useful if multiple versions
of the service exist, such as in test and production environ-
ments. The administrator can also add credentials for the
downstream service. This feature, called credential chaining,
allows mapping or consolidation of incoming credentials to
an identity that is relevant to the downstream server.

Finally, the administrator describes the incoming security
expectations for the service. An administrator can configure
whether a client needs to provide security credentials, and
where these credentials must reside (using HTTP headers, or
WS-Security conventions). In either case, authentication can
take place using basic user name and password, digest
authentication, or certificate authentication. SSL security can
be set on or off from this wizard pane. Additionally, the
administrator can construct an authorization list using iden-
tities from the internal provider, or from an external source
such as a remote LDAP server.

The Policy Editor

Fine-tuning of a policy, regardless of whether it was
defined manually, or through a wizard, is accomplished
through the policy editor frame. The policy editor presents the
entire assertion tree, and provides several interfaces to effect
morphological changes to the tree. Composite assertions can
be added and deleted or moved anywhere in the tree. Leaf
nodes can be configured, moved, or deleted, either through a
popup menu or as a drag-and-drop from the palette.

The Palette

Referring to FIG. 8 there is shown a screen display 1000 of
apalette which provides an efficient way to navigate to impor-
tant objects in the Manager 508. The palette supports drag-
and-drop of most objects into appropriate locations in a policy
in the policy editor frame.

Users and groups in the internal identity provider are man-
aged in the palette. Administrators maintain external identity
providers, such as connections to corporate LDAP directo-
ries, in the palette. Properties appropriate to identity provider
instances, such as LDAP URL, search base, etc, can easily be
configured from the palette entry. When an administrator
creates a policy template, it is made available here. Policy
templates provide a means to quickly configure a customized
policy that builds on the basic policies created in the service
wizard. Finally, all assertions are available in the palette to
support rapid construction of policies in the editor frame.
Identity View of Policy

An Identity view of policies may be understood as follows.
Consider the following situation: suppose that two different
versions of the stock quote service exist, one that provides
instant quotes, and one that provides quotes subject to a
20-minute delay. The interfaces for each of these services are
identical; thus, the SOAP messages sent to a Gateway cannot
be associated with one service or the other simply by their

US 9,130,897 B2

15

form. Instead, a differentiation may be made depending on
identity. Preferred users—perhaps executives in the organi-
zation—are to be routed to the instant quote service; all other
users are routed to the delayed quote interface.

This is easy to provision on the Gateway using identity-
centric policies. In this case, make the routing assertion sub-
ordinate to the identity assertion. This could be done in the
regular policy editor view; however to assist in building such
policies, the Manager includes a specialized Identity View, in
which the policy tree is rooted at a static Identity node. The
immediate children of this node are the different identities
authorized to under this policy to use the service. Each of
these identities can have a different assertion sub tree, includ-
ing any security assertions (such as SSL must be on), message
transformational assertions, and of course, routing assertions.
The Solution Architecture
Modular, Connector-Based Architecture

Referring now to FIG. 9, there is shown an architecture for
the SOAP agent 510 and Gateway server 506 according to an
embodiment of the present invention. The SOAP agent com-
prises a console subsystem 552, a message, processing sub-
system 554, a logging subsystem 556, a local PKI1 558 and a
cryptographic services subsystem 560. The gateway server
includes a management services subsystem 582, a message
processing subsystem 584, a local identity provider 586, a
logging and audit subsystem 588, a persistence manager 590,
crypto services 592, a WSDL processor 594 and a replication
engine 596. In addition the gateway communicates with
external identity providers 598.

The architecture is modular and extendable, in a true ser-
vice oriented architecture. It makes extensive use of plug-
gable service modules to accommodate continuously shifting
specifications. The message handling subsystems, for
example, supports pluggable handler modules. When a mes-
sage specification changes, or an entirely new message struc-
ture appears, a new handler can trivially be integrated into the
system.

Pluggable provider modules provide a means to interface
with external systems. This solution is designed to integrate
with existing infrastructure in the corporate network, such as
identity servers, authorization systems, logging sinks, net-
work and systems management applications, etc. Integrating
common identity systems such as LDAP (Lightweight Direc-
tory Access Protocol) or Microsoft’s Active Directory is a
trivial exercise using the pluggable interface design. In addi-
tion, a well-defined interface exists for the identity provider
system, allowing simple extension for unusual or custom
identity servers. Similar modules exist for authorization ser-
vices, allowing integration with existing LDAP or Active
Directory groups. Other connectors such as one that imple-
ments the emerging SAML (Security Assertion Markup Lan-
guage) specification, allowing integration with third-party
authorization products that operate as SAML assertion serv-
ers has been developed. Similarly, an XKMS (XML Key
Management Specification) connector has been developed to
integrate with existing corporate PKI systems.

Scalability and High Availability

Functionality in this kind of solution has little value if it
cannot handle high and variable transaction rates. Despite its
modularity and flexibility, the Gateway defines an efficient
message-processing path. This is an important design point.
Parsing and serialization technologies have been improved,
using a variety of techniques such as pull parsing and pattern
recognition, to ensure that this traditional processing bottle-
neck is not a cause of undue latency on the system. All
assertions are compiled to ensure the fastest possible perfor-
mance. Policies are cached on the Gateway to minimize

25

30

35

40

45

16

retrieval times once a message is identified and is ready for
processing. Strategic use of state information further speeds
processing, and extensive use is made of asynchronous 10
(both at the network and file levels) to ensure that operations
such as logging, socket writes, etc are removed from the
latency calculation. All transport connectors make use of
scalable socket programming; this allows adjust to the system
for the most efficient balance between sessions and threads.

The hardware appliance allows tuning of the system for
maximum performance. The appliance Operating System
(OS) is hardened for security, but also tuned to maximize
performance for the Gateway Server application, something
that would be impossible for a software-only solution on a
general purpose OS. As transaction volumes grow, Gateway
Servers can be clustered, using our stateful clustering tech-
nology. Clusters support inexpensive, third-party load bal-
ancers to distribute transaction volume across the Gateway
Servers. For example, a conventional HTTP level sprayer can
easily accommodate HTTP-bound SOAP messaging.

Clustering appliances also provides high availability. Gate-
way Server clusters share configuration information (user
profiles, policies, etc) between appliance pairs in a peer-to-
peer relationship. Any changes made by an administrator to
systems in a cluster are immediately replicated among all
peers. Any changes made to policy are further instantly
loaded into cache to ensure minimal possible latency for
policy change propagation in a cluster—essential when
responding to an evolving security threat. If a system is offline
for any reason during a change, it will re-synchronize as part
of'its restart operation, ensuring that stale policies or configu-
ration data are not used in any subsequent transactions.
Audit, Logging, and Monitoring

The Gateway Server features richly configurable logging
and alerting framework. Both logs and alerts can route to a
variety of different sinks. A connector is available for simple
file system logging, with rotation features. Logs can sink to
UDP and TCP sockets. Log entries are in simple text format;
these can be easily rendered to different target formats. These
logs can also be viewed anytime through the Policy Manager,
with simple filtering based on severity.

The SOAP Agent similarly features extensive logging of
events; these can be viewed selectively from the Agent GUI,
orin a user-accessible text file. Client logs can include a trace
of all transaction content for debugging purposes.

A fully configurable, event-based alerting system will also
be available in the next major release. This will allow admin-
istrators to set traps for important system events, such as low
memory, low disk space, unusually high access rates or large
numbers of access failures. These alarms can be propagated to
email, pagers, or third-party network management package.

In summary, Web services technologies offer a very com-
pelling vision of loosely coupled systems, where services are
published, discovered and invoked just in time. Unfortu-
nately, real world deployment of Web services is hampered by
issues such as the need to secure access to these services, and
the problems of describing policies around these implemen-
tations and coordinating them with the various clients. All
current security implementations and mechanisms introduce
brittleness and tight coupling between client and service,
leading to solutions that are not reusable, and that require
expensive re-development any time security policies or
agreements change. The problem is not addressed by the
current platform vendors since the bulk of their efforts has
been directed at the provisioning side of the equation, with no
consideration of how both sides of Web services transactions
(provider and consumer) are to coordinate.

US 9,130,897 B2

17

The solution presented here is the first solution to tackle the
problem of both managing and coordinating security, end-to-
end across a Web Services integration lifecycle. It consists of
three major components: a server that resides behind the
conventional firewall (the Gateway Server); a administrative
application to develop security policies and manage all Web
services (the Policy Manager); an optional client-side agent
that secures a transaction according to the policy in effect,
before the SOAP message is released to an insecure network
(the SOAP Agent); and a rich policy expression language (the
Policy Assertion Language).

This is a high performance, high availability solution that
allows administrators to decouple control of security and
integration policy from a service’s programmed business
logic. Collections of services can be centrally managed and
audited, virtually eliminating manual configuration or inte-
gration of the Web services themselves. Client-side interac-
tions can be completely automated, dynamically reflecting
changes in security while removing the complexity associ-
ated with the management of keys, certificates and policies.

As will be apparent to those skilled in the art in light of the
foregoing disclosure, many alterations and modifications are
possible in the practice of this invention without departing
from the spirit or scope thereof.

What is claimed is:

1. A system for securing web services on one or more
server computers delivered to one or more client computers,
comprising:

one or more logical expressions residing on said one or

more server computers that define rules that must be

satisfied in order for a web service provided by said one

or more server computers to be accessed by said one or

more client computers;

an agent process residing on said one or more client
computers, said one or more logical expressions are
cached on said one or more client computers at a first
point in time, said one or more logical expressions
residing on said one or more server computers are
updated at a second point in time subsequent to said
first point in time, said agent process generates a
service request message for said web service based on
at least a subset of said cached one or more logical
expressions subsequent to said second point in time,
said agent process transmits said service request mes-
sage for said web service to said one or more server
computers; and

a gateway process residing on said one or more server
computers, said gateway process denies access to said
web service in response to receiving said service
request message, said agent process causes said one or
more logical expressions that were updated at said
second point in time to be cached on said one or more
client computers in response to said service request
message being denied by said gateway process.

2. A system as defined in claim 1, wherein said agent
process generates said service request message for said web
service at a third point in time subsequent to said second point
in time.

25

35

40

45

50

55

18

3. A system as defined in claim 1, wherein said one or more
logical expressions include a rule set.

4. A system as defined in claim 1, wherein said one or more
logical expressions include an assertion.

5. A system as defined in claim 1, wherein said one or more
logical expressions include message rerouting information.

6. A method for securing web services on one or more
server computers delivered to one or more client computers,
comprising:

storing one or more logical expressions on said one or more

server computers that define rules that must be satisfied
in order for a web service provided by said one or more
server computers to be accessed by said one or more
client computers;

transmitting said one or more logical expressions to said

one or more client computers at a first point in time to be
cached on said one or more client computers;

updating said one or more logical expressions stored on

said one or more server computers at a second point in
time subsequent to said first point in time;

receiving at a gateway process residing on said one or more

server computers a service request message for said web
service from an agent process residing on said one or
more client computers;

processing said service request message in accordance

with said one or more logical expressions that were
updated at said second point in time, said processing said
service request message includes said gateway process
denying access to said web service in response to receiv-
ing said service request message;

receiving at said gateway process a request from said agent

process for said one or more logical expressions that
were updated at said second point in time in response to
said gateway process denying access to said web ser-
vice; and

transmitting said one or more logical expressions that were

updated at said second point in time to said one or more
client computers to be cached on said one or more client
computers in response to said request.

7. The method of claim 6, wherein said agent process
generates said service request message for said web service at
a third point in time subsequent to said second point in time.

8. The method of claim 6, wherein said agent process
transmits said service request message for said web service to
said gateway process at a third point in time subsequent to
said second point in time.

9. The method of claim 6, wherein said transmitting said
one or more logical expressions that were updated at said
second point in time to said one or more client computers is
performed by said gateway process.

10. The method of claim 6, wherein said one or more
logical expressions include a rule set.

11. The method of claim 6, wherein said one or more
logical expressions include an assertion.

12. The method of claim 6, wherein said one or more
logical expressions include message rerouting information.

#* #* #* #* #*

